
Java/Domino 4.6, Bob Balaban 

Page 5-1 

Chapter 5 

NOI Part 4: Agent, AgentContext, 
International, Form, Name 

This chapter discusses the classes relating to the Agent (but see Chapter 8 for a detailed 

discussion of how Agents are put together), AgentContext, International, Form and 

Name classes. 

The lotus.notes.Agent Class 

The Agent class represents the programmable aspects of Agents in Domino. You have 

the ability to locate, modify (to some extent), and execute Agent objects in a Database. 

See Chapter 1 for an overview of Agents and Chapter 8 for details on how they work. 

You can locate Agent instances by using the Database.getAgents() and 

Database.getAgent calls. 

Agent Properties 

String getComment() 

Returns the comment string associated with the Agent. A comment can be entered or 

modified using the Agent Builder UI. 

String getOwner() 

String getCommonOwner() 

Returns the name of the last person to sign the Agent. Agents are signed when they are 

first saved and whenever they are modified. The getOwner() call returns a fully 

distinguished (hierarchical) name. GetCommonOwner() returns only the "common" 

part of the user's name. 

lotus.notes.DateTime getLastRun() 



Java/Domino 4.6, Bob Balaban 

Page 5-2 

Returns a DateTime instance whose value is the date and time the Agent last ran. If the 

Agent has never run, getLastRun() returns a null. 

String getName() 

Returns the name of the Agent. 

lotus.notes.Database getParent() 

Returns the Database object in which the Agent lives. 

String getQuery() 

If a search query was entered when the Agent was created, this call returns it. If there is 

no query, it returns null. 

String getServerName() 

void setServerName(String name) 

The ServerName property designates the name of the server on which the Agent is 

allowed to run. This property is necessary because Agents are design elements, and as 

such they replicate along with the rest of the Database they reside in. If an Agent was by 

default allowed to run on any server, a replicated Agent would run on every server to 

which its Database was replicated, causing all kinds of conflicts and other grief. When 

an Agent is created, the ServerName property defaults to the current machine. You can 

edit it to any server name, but only one name is allowed. 

As of Domino Release 4.6, you can enter an asterisk ("*") for the server name to 

indicate that the Agent can run on any server. Be very careful, though, you should be 

sure that the Database does not replicate to any other server, or you should be sure that 

you've coded the Agent in such a way that it will never cause replication conflicts. For 

example, if your Agent only creates new Documents in the Database, you should be 

okay. If your Agent modified existing Documents, you are definitely not okay. 

If you modify the ServerName property you must invoke the Agent.save() method 

to commit your changes to disk. 



Java/Domino 4.6, Bob Balaban 

Page 5-3 

boolean isEnabled() 

void setEnabled(boolean flag) 

Agents are enabled by default when they are created, if they are set up to run on a 

schedule (hourly, daily, etc.). The Enabled property has no meaning for Agents that are 

not scheduled. If you modify the Enabled property you must invoke the Agent.Save() 

method to commit your changes to disk. 

boolean isPublic() 

Returns true if the Agent is public, or "shared." If the Agent is not public, it can be seen 

or executed only by the person who created it. 

Agent Methods 

void remove() 

Deletes the current Agent object from the Database. 

void run() 

Executes the Agent in the foreground. This is a synchronous call and will therefore 

"block" until the Agent is done. The Agent runs in the current process space, meaning 

that if you invoke this method from a program running on your workstation, the Agent 

code will be loaded into your machine's memory (regardless of where the Database 

containing the Agent lives) and run there. If you invoke this method from a background 

Agent running on a server, the Agent Manager process will load and execute the new 

Agent synchronously, suspending execution of the first Agent until the second is done. 

Agents invoked this way on a client machine run with the privileges of the current 

user id. Agents invoked this way from background Agents run with the privileges of 

the signer, even if the signer of the second Agent is different from the first. 

void save() 

Saves the current Agent to disk. You must have Designer (or better) access to the 

Database, or this call will throw an exception. 



Java/Domino 4.6, Bob Balaban 

Page 5-4 

The Agent is re-signed every time it is saved; therefore, this method will throw an 

exception if you invoke it from a server-based Agent (can't have just anyone signing 

Agents with the server's id, right?). 

String toString() 

Returns the name of the Agent. 

The lotus.notes.AgentContext Class 

As the name suggests, this class is only available to executing Agents. You get an 

instance of AgentContext from the Session class's getAgentContext() call (see Chapter 8 

for details on how Agents are run by Domino). AgentContext is where all the 

information about the Agent's location and environment is accessed. 

AgentContext Properties 

lotus.notes.Agent getCurrentAgent() 

Returns an instance of the current Agent object. 

lotus.notes.Database getCurrentDatabase() 

Returns an instance of the current Database, meaning the Database that the current 

Agent lives in. 

lotus.notes.Document.getDocumentContext() 

When an Agent is invoked via the Domino HTTP server, a "context document" is often 

provided, usually the submitted form. The context document is available to the Agent 

as an instance of the NOI Document class, allowing you to access all the data in the 

form. You can add to or modify this Document, but the HTTP server ignores any 

modifications. 

If you're writing an API program that uses the C API to execute an Agent, you can 

supply, as the HTTP server does, an in-memory note handle to the Agent API to serve 

as the context document. If your Agent adds or modifies Items in the Document, your 



Java/Domino 4.6, Bob Balaban 

Page 5-5 

API program could examine the Document after executing the Agent and make use of 

those changes. 

String getEffectiveUserName() 

When an Agent runs in the foreground (or in the background on a workstation), its 

privileges are those of the current user id. When an Agent runs in the background on a 

server, its privileges are those of the last signer of the Agent. One exception to this rule 

is that Agents invoked by the Domino HTTP server can run with the identity of the 

Web user instead of with the identity of the signer, if the Agent has been set up to do so 

(on the Agent Design properties box). 

The EffectiveUserName property returns the name of the user under whose identity 

the Agent is running. 

int getLastExitStatus() 

Returns the status code stored with the Agent from the last time the Agent ran. A value 

of 0 means that the Agent executed without error. 

lotus.notes.DateTime getLastRun() 

Returns the date and time the Agent last ran (identical to the Agent.LastRun property). 

lotus.notes.Document getSavedData() 

When an Agent is created, Notes also creates a special Document to go along with it. 

The purpose of this Document is to allow Agents to store data persistently in the 

Database across Agent invocations. The "saved data" Document is a design element, not 

a data element, and so will never appear in any View. It is destroyed whenever its 

associated Agent is modified or deleted. 

The advent of profile documents in Release 4.5 has by and large made use of the 

saved data document unnecessary. Access to the saved data document is not as efficient 

(for server Agents) as is access to profile documents, which are cached in the server's 

memory. Profile documents are saved forever, unlike saved data documents (which are 



Java/Domino 4.6, Bob Balaban 

Page 5-6 

deleted whenever the Agent is modified), making them a bit more generally useful. 

Saved data documents are also accessible only from their associated Agent (although 

you could have an Agent store the UNID of its saved data document somewhere, and 

then use that UNID later to access the saved data document directly), while profile 

documents are accessible from anywhere. 

lotus.notes.DocumentCollection getUnprocessedDocuments() 

The UnprocessedDocuments property is a DocumentCollection containing a set of 

Documents assembled at run time. The exact contents of the collection depend on how 

the Agent is configured: 

 • If the Agent is run from a View action button, and if the Agent is set up to 

run on "selected documents," then the collection contains the Documents 

that were selected in the View. You can access the current View by 

invoking Document.getParentView(). 

 • If the Agent is scheduled and set up to run on "all documents that are new 

or modified since the Agent last ran," then the collection contains those 

Documents. 

 • If the Agent is set up to perform a search, the collection contains the 

results of the query. 

For all other Agent configurations, this property will return an empty 

DocumentCollection. 

AgentContext Methods 

lotus.notes.DocumentCollection unprocessedFTSearch(String query, int 
maxdocs) 

lotus.notes.DocumentCollection unprocessedFTSearch(String query, int 
maxdocs, int sortoptions, int otheroptions) 

These calls are identical to the Database.FTSearch() calls, except that instead of 

operating on the entire Database, they operate only on the UnprocessedDocuments 



Java/Domino 4.6, Bob Balaban 

Page 5-7 

collection. They do not "refine" the UnprocessedDocuments collection by calling 

DocumentCollection.FTSearch(); instead they create a new collection instance. 

lotus.notes.DocumentCollection unprocessedSearch(String query, 
lotus.notes.DateTime cutoff, int maxdocs) 

This call is identical to the Database.Search() call, except that instead of operating on the 

entire Database, it operates only on the UnprocessedDocuments collection. It does not 

"refine" the UnprocessedDocuments collection by calling 

DocumentCollection.FTSearch(); instead it creates a new collection instance. 

void updateProcessedDoc(lotus.notes.Document) 

When an Agent is configured to operate on all Documents that are new or modified 

since the Agent last ran, the Agent gets a list of Documents called the left to do list. This 

list contains the set of Documents that the Agent has not yet processed. Agents set up 

this way must explicitly remove Documents from the left to do list; otherwise, those 

Documents will reappear in the list the next time the Agent runs. 

The updateProcessedDoc() call does exactly that for a single Document. Another, 

often more convenient way to accomplish the same thing is to first get the 

UnprocessedDocuments collection, then invoke updateAll() on it. This is equivalent to 

invoking updateProcessedDoc() for every Document in the collection. 

The lotus.notes.International Class 

Like the AgentContext class, International provides contextual information, in this case 

about Domino's international settings. Some of the settings are specific to Domino, 

while others come from the operating system. The International class is composed of 

read-only properties—there are no methods. 

International Properties 

String getAMString() 



Java/Domino 4.6, Bob Balaban 

Page 5-8 

String getPMString() 

These strings are used for AM and PM in time formatting. 

int getCurrencyDigits() 

The number of decimal places used in number formatting. 

String getCurrencySymbol() 

The character or characters used to denote the local currency. 

String getDateSep() 

String getDecimalSep() 

String getThousandsSep() 

String getTimeSep() 

The various characters used as separators in dates, times, and numbers. 

int getTimeZone() 

The current time zone. Might be positive or negative. 

String getToday() 

String getTomorrow() 

String getYesterday() 

Returns the strings used for special day names. 

boolean isCurrencySpace() 

If true, indicates that the local currency format uses a space between the currency 

symbol and the number. 

boolean isCurrencySuffix() 

If true, indicates that the currency symbol follows the number. Otherwise, the currency 

symbol precedes the number. 

boolean isCurrencyZero() 

If true, indicates that currency amounts between 0 and 1 should have a 0 preceding the 

decimal point. For example, $0.15, rather than $.15. 



Java/Domino 4.6, Bob Balaban 

Page 5-9 

boolean isDateDMY() 

boolean isDateMDY() 

boolean isDateYMD() 

These three properties indicate in what order the year, month, and day components of a 

date are displayed. Only one of these calls will return true in any session. 

boolean isDST() 

If true, indicates that the time format reflects daylight savings time. 

boolean isTime24Hour 

If true, indicates that the time format is a 24-hour format. 

The lotus.notes.Form Class 

The Form class allows somewhat limited access to the characteristics of a form. You can 

create a form instance (though NOI does not currently allow you to create forms 

programmatically) by using the Database.getForms() and Database.getForm() calls. 

Form Properties 

java.util.Vector getAliases() 

As with Views, a Form can have both a name and one or more aliases. When you create 

or modify a Form you can specify additional names for it in the Design Properties box. 

The names are separated from each other by vertical bars. The first name in the list is 

the name of the Form; the others are aliases. Also as with Views, the names can have 

underscores in them. 

This call returns a Vector containing a String instance for each alias of the Form. If 

the Form has no aliases, an empty Vector is returned. 

java.util.Vector getFields() 



Java/Domino 4.6, Bob Balaban 

Page 5-10 

Returns a list of field names used in the Form. The list comes from an Item attached to 

the Form named "$Fields." The contents of this Item are not always up to date, so don't 

assume that it is always accurate. 

java.util.Vector getFormUsers() 

void setFormUsers(java.util.Vector users) 

java.util.Vector getReaders() 

void setReaders(java.util.Vector) 

The FormUsers and Readers properties let you control who gets to create Documents 

using the Form (FormUsers) and who gets to have read access to Documents created 

with this Form (Readers). 

Each property is a list of user and/or group names. If a user is not in the FormUsers 

list (or in a group that is in the list), then that user will not be able to see the Form name 

in the Create menu, or otherwise be able to create a Document using the form. 

The Readers property works a bit differently. When Documents are created using 

the Form, the Readers list from the Form gets copied to the Documents as the default 

$Readers Item. Users who are in the list (or in a group that is in the list) will have Read 

access to the Document. The Document creator can modify the Document's Readers list 

in the Document Properties box before saving or sending the Document. 

Setting either of these properties causes your change to be committed to disk 

immediately. 

boolean isProtectReaders() 

void setProtectReaders(boolean flag) 

boolean isProtectUsers() 

boolean setProtectUsers(boolean flag) 

Setting the ProtectReaders and/or ProtectUsers properties to true mark the Readers 

and/or FormUsers lists as being protected from deletion or modification by the 



Java/Domino 4.6, Bob Balaban 

Page 5-11 

Replicator. Otherwise, it is possible that a new version of the Form will replicate into 

the database (or be brought in by the Design Refresh operation) and replace your 

Reader/User lists with its copy. 

String getName() 

Returns the name of the Form. 

boolean isSubForm() 

Returns true if the Form is a subform. 

Form Methods 

void remove() 

Deletes the Form from the Database. 

String toString() 

Returns the name of the Form. 

The lotus.notes.Name Class 

The Name class is a nice little utility for parsing distinguished names. You create a 

Name object using the Session.createName() call, passing a String in as the argument. If 

the String is a hierarchical name, the Name properties will return various pieces of that 

name. 

A fully distinguished name includes keyword tags designating special parts of the 

name as meaningful. For example the distinguished name CN=Bob 

Balaban/O=Looseleaf has two tags in it: the CN= part designates Bob Balaban as the 

common name, and the O= part designates Looseleaf as the organization. Lots of 

additional tags are available. For each of the Name properties, I've also provided the 

distinguished name tag that goes with it. 

The Name class has no methods. 

Name Properties 



Java/Domino 4.6, Bob Balaban 

Page 5-12 

String getAbbreviated() 

Returns the abbreviated form of the distinguished name. For example, CN=Bob 

Balaban/O=Looseleaf is returned as Bob Balaban/Looseleaf. To go from an abbreviated 

form to a fully distinguished form, use the getCanonical() call. 

String getADMD() 

Returns the administration management domain name associated with the user name. 

The tag is A=. If there was no A= tag in the original name, this property returns null. 

String getCanonical() 

Returns the canonical (unabbreviated) form of the name. 

String getCommon() 

Returns the common part of the distinguished name. The tag is CN=. 

String getCountry() 

Returns the country part of the name. The tag is C=. If there was no C= tag in the 

original name, this property returns null. 

String getGeneration() 

Returns the generation part of the name, such as Jr. The tag is Q=. If there was no Q= 

tag in the original name, this property returns null. 

String getGiven() 

Returns the given name. The tag is G=. If there was no G= tag in the original name, this 

property returns null. There is no reliable way for NOI to parse a given name out of a 

common name, especially if you consider the international implications. Europeans are 

used to having a person’s given name come first, but in many Asian languages the 

family name comes first. In the name Yip Wai-ki, for example, the given name is Wai-ki, 

the surname is Yip. 

String getInitials() 



Java/Domino 4.6, Bob Balaban 

Page 5-13 

Returns the initials belonging to the name. The tag is I=. If there was no I= tag in the 

original name, this property returns null. 

String getKeyword() 

Returns the part of the hierarchical name known as the keyword. The keyword consists 

of the following pieces of the name, if present, with backslash separators: 

country\organization\organizational unit 1\.organizational unit 2\.organizational unit 

3\.organizational unit 4. 

String getOrganization() 

The organization, usually the company name. The tag is O=. If there was no O= tag in 

the original name, this property returns null. 

String getOrgUnit1() 

String getOrgUnit2() 

String getOrgUnit3() 

String getOrgUnit4() 

Returns the specified organizational unit component. An organizational unit is usually 

a division, department or location identifier within an organization. Lotus, for example, 

uses office location as an organizational unit in its employees' Notes ids. The tag used 

for all organizational units is OU=, and you can have up to four of them in a name. 

If there was no OU= tag in the original name, these properties return null. 

String getPRMD() 

Returns the Private Management Domain part of the name. The tag is P=. If there was 

no P= tag in the original name, this property returns null. 

String getSurname() 

The surname, or family name. The tag is S=. If there was no S= tag in the original name, 

this property returns null. There is no way for NOI to reliably parse the surname out of 

the common name. 



Java/Domino 4.6, Bob Balaban 

Page 5-14 

boolean isHierarchical() 

Returns true if the Name is hierarchical. 

String toString() 

Returns the canonical name. 

Summary 

Next, Chapter 6 concludes our in-depth discussion of NOI with the Registration, 

Newsletter, and Log classes. 


